

Outline

- Electron Neutrino and Antineutrino Appearance
 - Review of previous results
 - Updated antineutrino appearance results
- Muon Neutrino and Antineutrino Disappearance
 - Review of previous results
 - New MiniBooNE/SciBooNE joint analysis

Motivation for MiniBooNE: The LSND Evidence for Oscillations

LSND Saw an excess of \overline{v}_e : $87.9 \pm 22.4 \pm 6.0$ events.

$$P(\overline{v_{\mu}} \to \overline{v_{e}}) = 4|U_{\mu 4}|^{2}|U_{e 4}|^{2}sin^{2}(1.27\Delta m^{2}_{41} L/E)$$
$$= sin^{2}2\theta sin^{2}(1.27\Delta m^{2} L/E)$$

3.8 σ evidence for oscillation.

In SM there are

The three oscillation signals cannot be reconciled without introducing Beyond Standard **Model Physics!**

MiniBooNE was designed to test the LSND signal

Keep L/E same as LSND while changing systematics, energy & event signature

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}L/E)$$
 Two neutrino fits

LSND: $E \sim 30 \text{ MeV}$ $L \sim 30 \text{ m}$ $L/E \sim 1$

MiniBooNE: $E \sim 500 \text{ MeV}$ $L \sim 500 \text{ m}$ $L/E \sim 1$

Neutrino mode: search for v_{μ} -> v_{e} appearance with 6.5E20 POT \rightarrow assumes CP/CPT conservation Antineutrino mode: search for $\overline{v_{\mu}}$ -> $\overline{v_{e}}$ appearance with 8.58E20 POT \rightarrow direct test of LSND

Neutrino Mode MiniBooNE Results (2009)

- 6.5E20 POT collected in neutrino mode
- E > 475 MeV data in good agreement with background prediction
 - -Energy region has reduced backgrounds and maintains high sensitivity to LSND oscillations.
 - -A two neutrino fit rules out LSND at the 90% CL assuming CP conservation.
- E < 475 MeV, statistically large (6σ) excess
 - -Reduced to 3σ after systematics, shape inconsistent with two neutrino oscillation interpretation of LSND. Excess of 129 +/- 43 (stat+sys) events is consistent with magnitude of LSND oscillations.

Published PRL 102,101802 (2009)

_E _v _[MeV]	200-300	300-475	475-1250
total background	186.8±26	228.3±24.5	385.9±35.7
v _e intrinsic	18.8	61.7	248.9
ν _u induced	168	166.6	137
$^{\circ}$ NC π^0	103.5	77.8	71.2
$NC \Delta \rightarrow N\gamma$	19.5	47.5	19.4
Dirt	11.5	12.3	11.5
other	33.5	29	34.9
Data	232	312	408
Data-MC	45.2±26	83.7±24.5	22.1±35.7
Significance	1.7σ	3.4σ	0.6σ

Neutrino Mode MiniBooNE Results (2009): Limit

- 3+2 with CP violation
 [Maltoni and Schwetz, hep-ph0705.0107; G. K., NuFACT 07 conference]
- Anomaly mediated photon production
 [Harvey, Hill, and Hill, hep-ph0708.1281]
- New light gauge boson [Nelson, Walsh, Phys. Rev. D 77, 033001 (2008)]
- Neutrino decay
 [hep-ph/0602083]
- Extra dimensions
 [hep-ph/0504096]
- CPT/Lorentz violation
 [PRD(2006)105009]

...

6

New Anti-neutrino mode results: 8.58E20 POT (50% more data)

Data Checks

• $\overline{\nu}_{\mu}$ rates and energy stable over entire antineutrino run.

- New SciBooNE constraint on K⁺ component of the Booster beam: Reduces this component of background by 3% and reduces uncertainty. (e-print 1105.2871 [hep-ex]). (accepted by Phys. Rev. D)
- Other systematic errors, constrained by MiniBooNE data, reduced due to higher statistics in control samples:
 - $-\pi$ -decay neutrino normalization factors
 - -Dirt neutrino background
 - -Neutral-current π^0 production.

New Anti-neutrino mode results: 8.58E20 POT

$475 \text{MeV} < E_{v} < 1250 \text{MeV}$:

- Expected events: 151.7±15.0 (syst) after fit constraints
- Observed events: 168.
- Observed Excess: 16.3 ± 19.4 (total) $\rightarrow 0.84\sigma$
- Excess in oscillation search region is reduced somewhat with new data.
- Low-energy excess is more significant and resembles neutrino-mode data.

Oscillation Fit

- Results for 8.58E20 POT
- Maximum likelihood fit.
- For the original osc energy region above 475 MeV, oscillations favored over background only (null) hypothesis at the 91.1% CL.
- Best Fit Point $(\Delta m^2, \sin^2 2\theta) = (4.6 \text{ eV}^2, 0.0045)$ $\chi^2_{BF}/\text{NDF} = 4.3/3.9 \text{ with } P(\chi^2) = 35.5\%$ $\chi^2_{NULL}/\text{NDF} = 9.3/5.9 \text{ with } P(\chi^2) = 14.9\%$
- Consistent with LSND, though evidence for LSND-type oscillations less strong than previous published 5.66E20 result
- Previous result (5.66E20 POT):
 Oscillation favored over null at 99.4%CL $\chi 2_{BF}/NDF = 8.0/6 \text{ with } P(\chi^2) = 8.7\%$ $\chi 2_{NULL}/NDF = 18.5/4 \text{ with } P(\chi^2) = 0.5\%.$

Oscillation Fit with $E_v > 200 \text{ MeV}$

- Results for 8.58e20 POT.
- Use full energy range 200<E,<2000MeV in the fit.
- Does not include effects (subtraction) of neutrino low energy excess.
- For E< 475 MeV, excess = 38.6 ± 18.5 (For all energies, excess = 57.7 ± 28.5).
- Maximum likelihood fit method.
- Null excluded at 97.6% with respect to the two neutrino oscillation fit (model dependent).
- Best Fit Point $(\Delta m^2, \sin^2 2\theta) = (4.6 \text{ eV}^2, 0.0038)$ $\chi^2_{BF}/\text{NDF} = 6.1/6.9, P(\chi^2) = 50.7\%$ $\chi^2_{NULL}/\text{NDF} = 14.5/8.9, P(\chi^2) = 10.1\%$

Antineutrino Mode Low Energy Excess: How does it scale

- Excess above background in 200<E<475 MeV is 38.6±18.5 events.
- Scaling from what is observed in neutrino mode we may test various hypotheses.
- Expected number of events in anti-neutrino mode assuming particular background as the source of low-E excess in neutrino mode:
 - -Total background: 50
 - Neutrino contamination only: 17
 - Δ →Nγ decays: 39
 - Dirt: 46
 - Protons on target (neutrals in secondary beam): 165
 - K+ in secondary beam: 67
 - NC π^0 : 48
 - Inclusive CC: 59

Oscillation Fit with $E_{\nu} > 200 \text{ MeV}$ (include low $E_{\nu} \nu$ -mode effects)

- Results for 8.58e20 POT.
- Assume simple scaling of neutrino low energy excess; subtract 17 events from low energy region (200-475 MeV).
- Maximum likelihood fit method.
- Best Fit Point $(\Delta m^2, \sin^2 2\theta) = (4.6 \text{ eV}^2, 0.0037)$ $P(\chi^2, BF) = 76.5\%$ $P(\chi^2, NULL) = 28.3\%$

Comparison of v_e and v_e Appearance Results

L/E Plot

- Data used for LSND and MiniBooNE correspond to 20<E_v<60 MeV and 200<E_v<3000 MeV, respectively.
- Oscillation probability is event excess divided by the number of events expected for 100% $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ transformation.
- -L is reconstructed distance travelled by the antineutrino from the mean neutrino production point to the interaction vertex; E_v is the reconstructed antineutrino energy.

Muon Neutrino & Antineutrino Disappearance

$$\textbf{P}_{\alpha\beta} = \delta_{\alpha\beta} - 4\Sigma_{i}\Sigma_{j} \left| \textbf{U}_{\alpha i} \; \textbf{U}^{*}_{\;\beta i} \, \textbf{U}^{*}_{\;\alpha j} \; \textbf{U}_{\beta j} \right| \, \text{sin}^{2} (1.27 \Delta m_{ij}^{\;2} \text{L/E}_{\nu})$$

As N increases, the formalism gets rapidly more complicated!

N	#∆m _{ij} ²	# $ heta_{ij}$
2	1	1
3	2	3
6	5	15

#CP Phases

0

1

10

In general:

$$P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}) < \frac{1}{4} P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{x}}) P(\bar{\nu_{e}} \rightarrow \bar{\nu_{x}})$$

From reactor experiments:

$$P(\bar{\nu_e} \rightarrow \bar{\nu_x}) < 8\%$$

From LSND/MiniBooNE:

$$P(\bar{\nu_u} \rightarrow \bar{\nu_e}) \sim 0.25\%$$

Therefore:

$$P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{x}}) > 10\%$$

3+N models require large $\overline{\nu}_{_{\!{\scriptscriptstyle L}}}$ disappearance

MiniBooNE Muon Neutrino & Antineutrino Disappearance Limits

A.A. Aguilar-Arevalo et al., PRL 103, 061802 (2009)

MiniBooNE/SciBooNE Joint ν_{μ} Disappearance Search

MiniBooNE/SciBooNE Joint v_{ii} Disappearance Search

arXiv: 1106.5685 (submitted to PRL)

Use the CC rate measured at SciBooNE to constrain the MiniBooNE rate and test for disappearance

Two analysis methods:

Simultaneous fit

- Fit SciBooNE and MiniBooNE data simultaneously for oscillation
- 2) Constraint applied within fit, effectively removes systematic uncertainties shared by both detectors

Spectrum fit

- Extract neutrino energy spectrum from SciBooNE data Phys.Rev.D83:012005,2011
- 2) Apply correction to MiniBooNE energy spectrum
- Fit for oscillation at MiniBooNE
- 4) Systematics reduced by extraction process

Joint \bar{v}_{μ} disappearance analysis underway, taking advantage of neutrino-mode measurements...

ν_{μ} CCQE Scattering

A.A. Aguilar-Arevalo, Phys. Rev. D81, 092005 (2010).

Extremely surprising result - CCQE $\sigma_{vu}(^{12}\text{C}) > 6 \sigma_{vu}(^{n})$

How can this be? Not seen before, requires correlations. Fermi Gas has no correlations and should be an overestimate.

A possible explanation involves short-range correlations & 2-body pion-exchange currents: Joe Carlson et al., Phys.Rev.**C65**, 024002 (2002); Martini et al., PRC80, 065001 (2009).

BooNE: Proposed Near Detector at ~200 m

(LOI arXiv:0910.2698)

- MiniBooNE like detector at 200m
- Flux, cross section and optical model errors cancel in 200m/500m ratio analysis
- Gain statistics quickly, already have far detector data
- Measure $v_{\mu} -> v_e \& \overline{v}_{\mu} -> \overline{v}_e$ oscillations and CP violation

BooNE: Proposed Near Detector at ~200 m

- Much better sensitivity for $v_{\mu} \& \overline{v}_{\mu}$ disappearance
- Look for CPT violation

10e20 Far/1e20 Near POT

6.5e20 Far/1e20 Near POT

Conclusions

Electron Neutrino and Antineutrino Appearance

- Significant excesses above background in both neutrino and antineutrino mode at low energy. With new data update, excess in antineutrino mode looks more like excess in neutrino mode.
- Antineutrino data are still consistent with LSND result; significance of oscillation signal relative to null is reduced.
- See also Georgia Karagiorgi's talk from DPF 2011 for fits to 3+1 and 3+2 models, and non-standard interactions.

Muon Neutrino and Antineutrino Disappearance

- SciBooNE data used in joint neutrino-mode analysis.
- Joint analysis underway for anti-neutrino mode; also taking advantage of improved reconstructions in MiniBooNE.
- Ultimately, would like to have two identical detectors at different distances for SBL disappearance to cover region of interest.

Backup slides

Future sensitivity

- MiniBooNE approved for a total of 1e21 POT
- Potential exclusion of null point assuming best fit signal
- Combined analysis of $\boldsymbol{v}_{_{\boldsymbol{e}}}$ and $\overline{\boldsymbol{\nu}}_{_{\boldsymbol{e}}}$

Neutrino Flux Revisited

- First measurement of neutrino contribution to anti-neutrino beam with non-magnetized detector: arxiv: 1102.1964 [hep-ex], submitted to Phys. Rev. D
- 3 independent, complementary measurements (arXiv: 1107.5327)
 - μ^+/μ^- angular distribution
 - μ^{-} capture
 - π^- absorption (CCI π^+ sample)

Calibration Sources

Particle Identification

- Identify events using timing and hit topology
- Use primarily Cherenkov light
- Can't distinguish electron from photon

Interactions in MiniBooNE (neutrino mode):

(similar mix for antineutrino mode, except rate down by factor of 5)

In situ background constraints:

- Reconstruct majority of π⁰ events; extrapolate into kinematic region where 1 photon is missed due to kinematics or escaping the tank
- Intrinsic v_e from μ+ originate from same π+ as the v_μ CCQE sample; measuring v_μ CCQE channel constrains intrinsic v_e from π+
- At high energy, v_μ flux is dominated by kaon production at the target; measuring v_μ CCQE at high energy constrains kaon production, and thus intrinsic v_e from K⁺

- About 80% of NC π_0 events come from resonant Δ production; constrain $\Delta \rightarrow N\gamma$ by measuring the resonant NC π_0 rate, apply known branching fraction to N, including nuclear corrections
- Dirt events come from neutrinos interacting in surrounding dirt and structure; fit dirt-enhanced sample to extract dirt event rate with 10% uncertainty

Every major source of background can be internally constrained by MiniBooNE

Constrained Fit

The following three distinct samples are used in the oscillation fits:

- 1. Background to v_e oscillations
- 2. v_e Signal prediction (dependent on Δm^2 , $\sin^2 2\theta$)
- 3. ν_{μ} CCQE sample, used to constrain ν_{e} prediction (signal+background)

 M_{ij} = full syst+stat covariance matrix at best fit prediction logL calculated using both datasets (ν_e and ν_μ CCQE), and corresponding covariance matrix

Previous Anti-neutrino Mode Results (2010): 5.66E20 POT

- Results for 5.66E20 POT collected in antial neutrino mode
- Only antineutrino's allowed to oscillate in fit
- In E < 475 MeV: A small 1.3σ electron-like excess.
- E > 475 MeV: An excess that is 3.0% consistent with null. Two neutrino oscillation fits consistent with LSND at 99.4% CL relative to null.

Events/MeV 0.35 0.30 Data (stat err.) from μ* from K* from K π[≬] misid dirt 0.25 other Constr. Syst. Error Best Fit 0.20 0.15 0.10 0.05 0.00

1.0

1.2

1.4

E^{QE} (GeV)

0.8

0.6

Published **Phys.Rev.Lett.105:181801,2010**. e-Print: **arXiv:1007.1150** [hep-ex])

Previous Anti-neutrino Mode Results (2010): 5.66E20 POT

Null excluded at 99.4% with respect to the two neutrino oscillation fit.

Best Fit Point $(\Delta m^2, \sin^2 2\theta) =$ $(0.064 \text{ eV}^2, 0.96)$ $\chi^2/\text{NDF} = 16.4/12.6$ $P(\chi^2) = 20.5\%$

Neutrino Cross Sections

• 8 neutrino cross section publications

(NUANCE)

ν_{μ} CCQE Scattering

A.A. Aguilar-Arevalo, Phys. Rev. D81, 092005 (2010).

Extremely surprising result - CCQE $\sigma_{vu}(^{12}\text{C})>6$ $\sigma_{vu}(^{n})$

How can this be? Not seen before, requires correlations. Fermi Gas has no correlations and should be an overestimate.

A possible explanation involves short-range correlations & 2-body pion-exchange currents: Joe Carlson et al., Phys.Rev.**C65**, 024002 (2002); Martini et al., PRC80, 065001 (2009).

Nuclear Effects to the Rescue?

 possible explanation: extra contributions from multi-nucleon correlations in the nucleus (all prior calcs assume indep particles)

Martini et al., PRC 80, 065001 (2009)

- large enhancement from short range correlations (SRC) and 2-body currents
- can predict MiniBooNE data without having to increase M_A (here, M_A =1.0 GeV)

Nuclear Effects to the Rescue?

 possible explanation: extra contributions from multi-nucleon correlations in the nucleus (all prior calcs assume indep particles)

Martini et al., PRC 80, 065001 (2009)

 could this explain the difference between MiniBooNE & NOMAD?

NOMAD: $\mu \& \mu + p$

MiniBooNE: μ + no π 's + any # p's

jury is still out on this

need to be clear what we mean by "QE"

Is the Neutrino Energy Estimated Correctly in CCQE?

Amaro, et al, PHYSICAL REVIEW C 82, 044601 (2010)

GLOBAL FITS TO SHORT-BASELINE ANTINEUTRINO: (3+1)

MiniBooNE(∇) and LSND are compatible with each other and with all other short-baseline antineutrino results:

Reactor anomaly: allows oscillations at >99% CL All antineutrino datasets: compatibility = 22%

includes 2010 MiniBooNE antineutrino appearance dataset, and new reactor flux predictions

GLOBAL FITS: (3+1)

And constraints from v_e disappearance experiments:

Measured cross-sections agree with each-other (different L/E) and with theory

Now directly excluded by KARMEN and LSND v_e cross section measurements.

J.M.Conrad and M.H.Shaevitz, 1106.5552v2 [hep-ex]

[Reactor anomaly not excluded]

GLOBAL FITS: (3+1)

Consequently, impossible to reconcile all short-baseline results under (3+1).

Compatibility of all short-baseline datasets: 0.11% (3+1) scenario essentially RULED OUT

GLOBAL FITS: (3+2) WITH CPV SEEMS INSUFFICIENT

 $\Delta m_{41}^2 |U_{e4}| |U_{\mu 4}| \Delta m_{51}^2 |U_{e5}| |U_{\mu 5}| \delta/\pi \chi^2/\text{dof}$ Kopp et al., hep-ph:1103.4570 0.47 0.128 0.165 0.87 0.138 0.148 1.64 110.1/130 3+2

24

Kopp et al., hep-ph:1103.4570